Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 490: 14

Answer

$${e^{{{\tan }^{ - 1}}x}} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{e^{{{\tan }^{ - 1}}x}}}}{{1 + {x^2}}}} dx \cr & {\text{substitute }}u = {\tan ^{ - 1}}x, \cr & du = \frac{1}{{1 + {x^2}}}dx \cr & = \int {\frac{{{e^{{{\tan }^{ - 1}}x}}}}{{1 + {x^2}}}} dx \cr & = \int {{e^{{{\tan }^{ - 1}}x}}\frac{1}{{1 + {x^2}}}} dx \cr & = \int {{e^u}du} \cr & {\text{find the antiderivative }} \cr & = {e^u} + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = {\tan ^{ - 1}}x, \cr & = {e^{{{\tan }^{ - 1}}x}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.