Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 491: 20

Answer

$$\sec \left( {\sin \theta } \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\sec \left( {\sin \theta } \right)\tan \left( {\sin \theta } \right)\cos \theta } d\theta \cr & {\text{substitute }}u = \sin \theta ,{\text{ }}du = \cos \theta dt \cr & \sec \left( {\sin \theta } \right)\tan \left( {\sin \theta } \right)\cos \theta = \int {\sec u\tan u} du \cr & {\text{find the antiderivative }} \cr & = \sec u + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \ln x \cr & = \sec \left( {\sin \theta } \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.