Answer
$$\sec \left( {\ln x} \right) + C$$
Work Step by Step
$$\eqalign{
& \int {\frac{{\sec \left( {\ln x} \right)\tan \left( {\ln x} \right)}}{x}} dx \cr
& = \int {\sec \left( {\ln x} \right)\tan \left( {\ln x} \right)} \left( {\frac{1}{x}} \right)dx \cr
& {\text{substitute }}u = \ln x,{\text{ }}du = \frac{1}{x}dx \cr
& = \int {\sec u\tan u} du \cr
& {\text{find the antiderivative}} \cr
& \sec u + C \cr
& {\text{write in terms of }}x,{\text{ replace }}u = \ln x \cr
& = \sec \left( {\ln x} \right) + C \cr} $$