Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 490: 17

Answer

$$2\sinh\sqrt x + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\cosh \sqrt x }}{{\sqrt x }}} dx \cr & {\text{substitute }}u = \sqrt x \cr & du = \frac{1}{{2\sqrt x }}dx \cr & 2du = \frac{1}{{\sqrt x }}dx \cr & = \int {\cosh \sqrt x \frac{1}{{\sqrt x }}} dx \cr & \int {\cosh u\left( 2 \right)} du \cr & = 2\int {\cosh udu} \cr & {\text{find the antiderivative }} \cr & = 2\sinh u + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \sqrt x \cr & = 2\sinh\sqrt x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.