Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 490: 5

Answer

$$ - \frac{1}{3}\ln \left| {2 + \cos 3x} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sin 3x}}{{2 + \cos 3x}}} dx \cr & {\text{substitute }}u = 2 + \cos 3x,{\text{ }}du = - 3\sin 3xdx \cr & \int {\frac{{\sin 3x}}{{2 + \cos 3x}}} dx \cr & \int {\frac{{\left( { - 1/3} \right)du}}{u}} \cr & = - \frac{1}{3}\int {\frac{{du}}{u}} \cr & {\text{find the antiderivative}}{\text{,}} \cr & = - \frac{1}{3}\ln \left| u \right| + C \cr & {\text{write in terms of }}x \cr & = - \frac{1}{3}\ln \left| {2 + \cos 3x} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.