Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 490: 16

Answer

$$\frac{1}{2}\ln \left| {\sin \left( {{x^2} + 2x} \right)} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\left( {x + 1} \right)\cot \left( {{x^2} + 2x} \right)} dx \cr & {\text{substitute }}u = {x^2} + 2x \cr & du = \left( {2x + 2} \right)dx \cr & \frac{1}{2}du = \left( {x + 1} \right)dx \cr & = \int {\cot u\left( {\frac{1}{2}} \right)} du \cr & = \frac{1}{2}\int {\cot u} du \cr & = \frac{1}{2}\int {\frac{{\cos u}}{{\sin u}}} du \cr & {\text{find the antiderivative }} \cr & = \frac{1}{2}\ln \left| {\sin u} \right| + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = {x^2} + 2x \cr & = \frac{1}{2}\ln \left| {\sin \left( {{x^2} + 2x} \right)} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.