Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 490: 12

Answer

$$ - {\operatorname{csch} ^{ - 1}}\left| {\sin x} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\cos x}}{{\sin x\sqrt {{{\sin }^2}x + 1} }}dx} \cr & {\text{substitute }}u = \sin x, \cr & du = \cos xdx \cr & \int {\frac{{\cos x}}{{\sin x\sqrt {{{\sin }^2}x + 1} }}dx} = \int {\frac{{du}}{{u\sqrt {{u^2} + 1} }}} \cr & {\text{find the antiderivative using the theorem 6}}{\text{.8}}{\text{.6 }}\left( {{\text{see page 480}}} \right) \cr & = - {\operatorname{csch} ^{ - 1}}\left| u \right| + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \sin x, \cr & = - {\operatorname{csch} ^{ - 1}}\left| {\sin x} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.