Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 490: 15

Answer

$$2{e^{\sqrt {x - 1} }} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{e^{\sqrt {x - 1} }}}}{{\sqrt {x - 1} }}} dx \cr & {\text{substitute }}u = \sqrt {x - 1} \cr & du = \frac{1}{{2\sqrt {x - 1} }}dx \cr & 2du = \frac{1}{{\sqrt {x - 1} }}dx \cr & = \int {{e^{\sqrt {x - 1} }}\frac{1}{{\sqrt {x - 1} }}} dx \cr & \int {{e^u}\left( 2 \right)} du \cr & = 2\int {{e^u}du} \cr & {\text{find the antiderivative }} \cr & = 2{e^u} + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \sqrt {x - 1} \cr & = 2{e^{\sqrt {x - 1} }} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.