Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 490: 6

Answer

$$\frac{1}{6}{\tan ^{ - 1}}\left( {\frac{{2x}}{3}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{9 + 4{x^2}}}} dx \cr & {\text{substitute }}u = 2x,{\text{ }}du = 2dx,{\text{ }}a = 3 \cr & = \int {\frac{1}{{{{\left( 3 \right)}^2} + {{\left( {2x} \right)}^2}}}} dx \cr & = \int {\frac{{\left( {1/2} \right)}}{{{a^2} + {u^2}}}} dx \cr & = \frac{1}{2}\int {\frac{1}{{{a^2} + {u^2}}}} dx \cr & {\text{ use the formula }}\int {\frac{{du}}{{{a^2} + {u^2}}}} = \frac{1}{a}ta{n^{ - 1}}\left( {\frac{u}{a}} \right) + C,{\text{ }}\left( {{\text{see page 468}}} \right) \cr & = \frac{1}{{2a}}{\tan ^{ - 1}}\left( {\frac{u}{a}} \right) + C \cr & {\text{write in terms of }}x \cr & = \frac{1}{{2\left( 3 \right)}}{\tan ^{ - 1}}\left( {\frac{{2x}}{3}} \right) + C \cr & = \frac{1}{6}{\tan ^{ - 1}}\left( {\frac{{2x}}{3}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.