Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 490: 18

Answer

$$ - \frac{1}{{\ln x}} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{x{{\left( {\ln x} \right)}^2}}}} \cr & {\text{substitute }}u = \ln x \cr & du = \frac{1}{x}dx \cr & = \int {\frac{1}{{{{\left( {\ln x} \right)}^2}}}} \left( {\frac{1}{x}} \right)dx \cr & = \int {\frac{1}{{{u^2}}}} du \cr & {\text{write with negative exponent}} \cr & = \int {{u^{ - 2}}} du \cr & {\text{find the antiderivative}} \cr & = \frac{{{u^{ - 1}}}}{{ - 1}} + C \cr & = - \frac{1}{u} + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \ln x \cr & = - \frac{1}{{\ln x}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.