Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 490: 13

Answer

$$\ln \left( {{e^x} + \sqrt {{e^{2x}} + 4} } \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{e^x}}}{{\sqrt {4 + {e^{2x}}} }}dx} \cr & {\text{substitute }}u = {e^x},\,\,du = {e^x}dx \cr & \int {\frac{{{e^x}}}{{\sqrt {4 + {e^{2x}}} }}dx} = \int {\frac{{{e^x}}}{{\sqrt {{2^2} + {{\left( {{e^x}} \right)}^2}} }}dx} \cr & = \int {\frac{{du}}{{\sqrt {{2^2} + {u^2}} }}} \cr & {\text{find the antiderivative using the theorem 6}}{\text{.8}}{\text{.6 }}\left( {{\text{see page 480}}} \right) \cr & \int {\frac{{du}}{{\sqrt {{a^2} + {u^2}} }} = \ln \left( {u + \sqrt {{u^2} + {a^2}} } \right) + C} \cr & = \ln \left( {u + \sqrt {{u^2} + {a^2}} } \right) + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = {e^x},{\text{ and }}a = 2 \cr & = \ln \left( {{e^x} + \sqrt {{{\left( {{e^x}} \right)}^2} + {{\left( 2 \right)}^2}} } \right) + C \cr & {\text{Simplify}} \cr & = \ln \left( {{e^x} + \sqrt {{e^{2x}} + 4} } \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.