Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 490: 4

Answer

$$ - 2\ln \left| {\cos {x^2}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {4x} \tan \left( {{x^2}} \right)dx \cr & {\text{substitute }}u = {x^2},{\text{ }}du = 2xdx \cr & = 4\int x \tan \left( {{x^2}} \right)dx \cr & = 4\int {\tan } u\left( {\frac{1}{2}du} \right) \cr & = 2\int {\tan } udu \cr & {\text{find the antiderivative}}{\text{, }}\int {\tan \theta } d\theta = - \ln \left| {\cos \theta } \right| + C \cr & = 2\left( { - \ln \left| {\cos \theta } \right|} \right) + C \cr & = - 2\ln \left| {\cos \theta } \right| + C \cr & {\text{write in terms of }}x \cr & = - 2\ln \left| {\cos {x^2}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.