Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 490: 11

Answer

$$ - \frac{{{{\cos }^6}5x}}{{30}} + C$$

Work Step by Step

$$\eqalign{ & \int {{{\cos }^5}5x\sin 5x} dx \cr & {\text{substitute }}u = \cos 5x, \cr & du = - \sin 5x\left( 5 \right)dx \cr & - \left( {1/5} \right)du = \sin 5xdx \cr & \int {{{\cos }^5}5x\sin 5x} dx = \int {{u^5}\left( { - 1/5} \right)} du \cr & = - \frac{1}{5}\int {{u^5}du} \cr & {\text{find the antiderivative}} \cr & = - \frac{1}{5}\left( {\frac{{{u^6}}}{6}} \right) + C \cr & = - \frac{{{u^6}}}{{30}} + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \cos 5x, \cr & = - \frac{{{{\cos }^6}5x}}{{30}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.