Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.1 - Rational Expressions and Functions; Multiplying and Dividing - Exercise Set - Page 414: 71

Answer

$1$

Work Step by Step

Factor what we can: $10z^{2}+13z-3=10z^{2}+15z-2z-3 =$... factor in pairs $=5z(2z+3)-(2z+3)=(2z+3)(5z-1)$ $2z^{2}-3z-2z+3=$... factor in pairs $ = z(2z-3)-(2z-3)=(2z-3)(z-1)$ $15z^{2}-28z+5=15z^{2}-25z-3z+5=$... factor in pairs $=5z(3z-5)-(3z-5)=(3z-5)(5z-1)$ $3z^{2}-8z+5=3z^{2}-3z-5z+5=$... factor in pairs $=3z(z-1)-5(z-1)=(z-1)(3z-5)$ $25z^{2}-10z+1=(5z)^{2}-2(5z)(1)+(1)^{2}=(5z-1)^{2}$ $4z^{2}-9=(2z)^{2}-3^{2}=(2z-3)(2z+3)$ Rewrite the problem: $ \displaystyle \frac{(2z+3)(5z-1)}{(z-1)(3z-5)}\cdot\frac{(2z-3)(z-1)}{(5z-1)(5z-1)}\cdot\frac{(3z-5)(5z-1)}{(2z-3)(2z+3)}=\qquad$ ... reduce common factors $= \displaystyle \frac{(1)(1)}{(z-1)(3z-5)}\cdot\frac{(2z-3)(z-1)}{(1)(5z-1)}\cdot\frac{(3z-5)(5z-1)}{(2z-3)(1)}$ $= \displaystyle \frac{(1)(1)}{(1)(3z-5)}\cdot\frac{(1)(1)}{(1)(5z-1)}\cdot\frac{(3z-5)(5z-1)}{(1)(1)}$ $= \displaystyle \frac{(1)(1)}{(1)(1)}\cdot\frac{(1)(1)}{(1)(1)}\cdot\frac{(1)(1)}{(1)(1)}$ = $1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.