Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.1 - Rational Expressions and Functions; Multiplying and Dividing - Exercise Set - Page 414: 70

Answer

$ \displaystyle \frac{9a^{2}+6ab+4b^{2}}{b+2}$

Work Step by Step

Factor what we can: $27a^{3}-8b^{3}$difference of cubes = $(3a)^{3}-(2b)^{3}$ $=(3a-2b)[(3a)^{2}+(3a)(2b)+(2b)^{2}]$ $=(3a-2b)(9a^{2}+6ab+4b^{2})$ $bc-b-3c+3$ = ... factor in pairs $=b(c-1)-3(c-1)=(c-1)(b-3)$ $b^{2}-b-6=b^{2}-3b+2b-6$= ... factor in pairs $=b(b-3)+2(b-3)=(b-3)(b+2)$ $3ac-2bc-3a+2b$= ... factor in pairs $=c(3a-2b)-(3a-2b)=(3a-2b)(c-1)$ Rewrite the problem: $ \displaystyle \frac{(3a-2b)(9a^{2}+6ab+4b^{2})}{(b-3)(b+2)}\cdot\frac{(c-1)(b-3)}{(3a-2b)(c-1)}=\qquad$ ... reduce common factors $= \displaystyle \frac{(1)(9a^{2}+6ab+4b^{2})}{(b-3)(b+2)}\cdot\frac{(c-1)(b-3)}{(1)(c-1)} $ $= \displaystyle \frac{(1)(9a^{2}+6ab+4b^{2})}{(b-3)(b+2)}\cdot\frac{(1)(b-3)}{(1)(1)} $ $= \displaystyle \frac{(1)(9a^{2}+6ab+4b^{2})}{(1)(b+2)}\cdot\frac{(1)(1)}{(1)(1)} $ =$ \displaystyle \frac{9a^{2}+6ab+4b^{2}}{b+2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.