Answer
$\frac{x+5}{x}$ and $x\ne5, x\ne-2.$
Work Step by Step
The product of a binomial sum and a binomial difference is: $(A+B)(A-B)=A^2-B^2$.
Hence:
$\frac{x^2-25}{x^2-3x-10}\frac{x+2}{x}=\frac{x^2-5^2}{x^2+2x-5x-10}\frac{x+2}{x}=\frac{(x+5)(x-5)}{x(x+2)-5(x+2)}=\frac{(x+5)(x-5)}{(x+2)(x-5)}\frac{x+2}{x}=\frac{x+5}{x}$ and $x\ne5, x\ne-2.$