Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.1 - Rational Expressions and Functions; Multiplying and Dividing - Exercise Set - Page 414: 68

Answer

$\displaystyle \frac{(2x+y)(3x+y)}{(3x-y)(x+3y)}$

Work Step by Step

Factor what we can: $ 2x^{2}-3xy-2y^{2}=2x^{2}-4xy+xy-2y^{2}=\qquad$ ... factor in pairs $=2x(x-2y)+y(x-2y)$ $=(x-2y)(2x+y)$ $ 3x^{2}-2xy-y^{2}=3x^{2}-3xy+xy-y^{2}=\qquad$ ... factor in pairs $=3x(x-y)+y(x-y)$ $=(x-y)(3x+y)$ $ 3x^{2}-4xy+y^{2}=3x^{2}-3xy-xy+y^{2}\qquad$ ... factor in pairs $=3x(x-y)-y(x-y)$ $=(x-y)(3x-y)$ $ x^{2}+xy-6y^{2}=x^{2}+3xy-2xy-6y^{2}\qquad$ ... factor in pairs $=x(x+3y)-2y(x+3y)$ $=(x+3y)(x-2y)$ Rewrite the problem: $\displaystyle \frac{(x-2y)(2x+y)}{(x-y)(3x-y)}\cdot\frac{(x-y)(3x+y)}{(x+3y)(x-2y)}=\qquad$ ... reduce common factors $=\displaystyle \frac{(1)(2x+y)}{(1)(3x-y)}\cdot\frac{(1)(3x+y)}{(x+3y)(1)}=\qquad$ = $\displaystyle \frac{(2x+y)(3x+y)}{(3x-y)(x+3y)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.