Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.1 - Rational Expressions and Functions; Multiplying and Dividing - Exercise Set - Page 414: 69

Answer

$1$

Work Step by Step

Factor what we can: $ 4a^{2}+2ab+b^{2}= \qquad ...$ prime $4a^{2}-b^{2}$ = difference of squares = $(2a-b)(2a+b)$ $8a^{3}-b^{3}$= difference of cubes = $(2a)^{3}-(b)^{3}$ $=(2a-b)[(2a)^{2}+(2a)(b)+(b)^{2}]$ $=(2a-b)(4a^{2}+2ab+b^{2})$ Rewrite the problem: $\displaystyle \frac{(4a^{2}+2ab+b^{2})}{(2a+b)}\cdot\frac{(2a-b)(2a+b)}{(2a-b)(4a^{2}+2ab+b^{2})}=\qquad$ ... reduce common factors $=\displaystyle \frac{(1)}{(2a+b)}\cdot\frac{(2a-b)(2a+b)}{(2a-b)(1)}$ $=\displaystyle \frac{(1)}{(2a+b)}\cdot\frac{(1)(2a+b)}{(1)(1)}$ $=\displaystyle \frac{(1)}{(1)}\cdot\frac{(1)(1)}{(1)(1)}$ = $1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.