Answer
a. $P(x)=x(x-2)(x+2)(x^2+4)$
b. $P(x)=x(x-2)(x+2)(x-2i)(x+2i)$
Work Step by Step
$P(x)=x^5-16x$,
a) Factor the polynomial into linear and irreducible quadratic factors with real coefficients:
$P(x)=x(x^4-16)=x(x^2-4)(x^2+4)=x(x-2)(x+2)(x^2+4)$
b. Factor $P$ completely:
$x^2+4=0\Rightarrow x=\pm 2i$
$P(x)=x(x-2)(x+2)(x-2i)(x+2i)$