College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.5 - Complex Zeros and the Fundamental Theorem of Algebra - 3.5 Exercises - Page 330: 69

Answer

a. $P(x)=(x+2)(x-2)(x^2+2x+4)(x^2-2x+4)$, b. $P(x)=(x-2)(x+2)(x+1+\sqrt 3i)(x+1-\sqrt 3i)(x-1-\sqrt 3i)(x-1+\sqrt 3i)$

Work Step by Step

$P(x)=x^6-64$, a) Factor the polynomial into linear and irreducible quadratic factors: Use the difference of squares formula: $a^2-b^2=(a+b)(a-b)$ $P(x)=(x^3)^2-8^2=(x^3+8)(x^3-8)$ Use the difference of cubes formula: $a^3-b^3=(a-b)(a^2+ab+b^2)$ $P(x)=(x^3+2^3)(x^3-2^3)=(x+2)(x^2-2x+4)(x-2)(x^2+2x+4)$. We got: $P(x)=(x+2)(x-2)(x^2+2x+4)(x^2-2x+4)$ b. Factor $P$ completely: $x^2+2x+4=0\Rightarrow x=-1\pm\sqrt 3i$ $x^2-2x+4=0\Rightarrow x=1\pm\sqrt 3i$ So $P$ can be written as: $P(x)=(x-2)(x+2)(x+1+\sqrt 3i)(x+1-\sqrt 3i)(x-1-\sqrt 3i)(x-1+\sqrt 3i)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.