College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.5 - Complex Zeros and the Fundamental Theorem of Algebra - 3.5 Exercises - Page 330: 50

Answer

$x\displaystyle \in\{-3, -2-\sqrt 2i,-2+\sqrt 2i \}$

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f(x) $with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^{3}+7x^{2}+18x+18$ a. Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm 2, \pm3, \pm6,\pm9, \pm18$ $q:\qquad \pm 1$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm2, \pm3, \pm6, \pm9, \pm18 $ b. Try for $x=-3:$ $\begin{array}{lllll} \underline{-3}| & 1 & 7 & 18 & 18\\ & & -3 & -12 & -18\\ & -- & -- & -- & --\\ & 1 & 4 & 6 & |\underline{0} \end{array}$ $-3$ is a zero, $f(x)=(x+3)(x^{2} +4x+6)$ c. Solve for the trinomial using the quadratic formula for the quadratic equation of $ax^2+bx+c$, $x=\frac{-b \pm \sqrt {b^2-4ac}}{2a}$. in this case, $x^2+4x+6$, $x=\frac{-4 \pm \sqrt {4^2-4\times 1\times 6}}{2}=\frac{-4\pm 2\sqrt {2}i}{2}=-2\pm \sqrt 2i$ $x\displaystyle \in\{-3, -2-\sqrt 2i,-2+\sqrt 2i \}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.