College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.5 - Complex Zeros and the Fundamental Theorem of Algebra - 3.5 Exercises - Page 330: 54

Answer

$x\displaystyle \in\left\{\frac{1- \sqrt 5i}{2}, \frac{1+ \sqrt 5i}{2}, 3 \right\}$

Work Step by Step

See The Rational Zero Theorem: If $\displaystyle \frac{p}{q}$ is a zero of the polynomial $$ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=2x^{3}-8x^2+9x-9$ a. Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm 2, \pm 3, \pm 9, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{9}{2}$ $q:\qquad \pm 1, \pm 2$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm 2, \pm 3, \pm 9, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{9}{2}$ b. Try for $x=3:$ $\begin{array}{lllll} \underline{3}| & 2 & -8 & 9 & -9\\ & & 6 & -6 & 9\\ & -- & -- & -- & --\\ & 2 & -2 & 3 & |\underline{0} \end{array}$ $3$ is a zero, $f(x)=(x-3)(2x^{2} -2x+3)$ c. Solve for the trinomial using the quadratic formula for the quadratic equation of $ax^2+bx+c$, $x=\frac{-b \pm \sqrt {b^2-4ac}}{2a}$. in this case, $2x^2-2x+3$, $x=\frac{2 \pm \sqrt {(-2)^2-4\times 2\times 3}}{2\times 2}=\frac{2\pm 2\sqrt {5}i}{4}=\frac{1\pm \sqrt 5i}{2}$ $x\displaystyle \in\left\{\frac{1- \sqrt 5i}{2}, \frac{1+ \sqrt 5i}{2}, 3 \right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.