College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.5 - Complex Zeros and the Fundamental Theorem of Algebra - 3.5 Exercises - Page 330: 63

Answer

$x\displaystyle \in\{ -3i,3i, 1\}$ The zero $1$ has multiplicity $3$.

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f$ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^5-3x^4+12x^3-28x^2+27x-9$ a. Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1,\pm3,\pm9$ $q:\qquad \pm 1$ $\displaystyle \frac{p}{q}:\qquad\pm 1, \pm3,\pm9$ Try for $x=1$. $\begin{array}{lllll} \underline {1}| & 1& -3 & 12 & -28&27& -9\\ & & 1&-2 & 10&-18& 9\\ & -- & -- & -- & --\\ & 1&-2 &10& -18& 9 & |\underline{0} \end{array}$ $1$ is a zero, $f(x)=(x-1)(x^4-2x^3+10x^2-18x+9)$, Try for $x=1$. $\begin{array}{lllll} \underline {1}| & 1 & -2 & 10&-18& 9\\ & & 1 & -1&9& -9\\ & -- & -- & -- & --\\ & 1 &-1& 9& -9 & |\underline{0} \end{array}$ $1$ is a zero, $f(x)=(x-1)^2(x^3-x^2+9x-9)$, c. Factor the quadrinomial: $x^3-x^2+9x-9=x^2(x-1)+9(x-1)=(x^2+9)(x-1)=(x^2+9)(x-1)$. Solve the equation $(x-1)^3(x^2+9)=0$ $x\displaystyle \in\{ -3 i,3i, 1\}$ The zero $1$ has multiplicity $3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.