College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.5 - Complex Zeros and the Fundamental Theorem of Algebra - 3.5 Exercises - Page 330: 61

Answer

$x\displaystyle \in\left\{ - i,i, -\frac{1}{2}\right\}$ The zero $-\frac{1}{2}$ has multiplicity $2$.

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f$ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=4x^4+4x^3+5x^2+4x+1$ a. Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1$ $q:\qquad \pm 1, \pm 2,\pm 4$ $\displaystyle \frac{p}{q}:\qquad\pm 1 \pm \frac{1}{2}, \pm \frac{1}{4}$ Try for $x=-\frac{1}{2}$. $\begin{array}{lllll} \underline{-\frac{1}{2}}| & 4 & 4 & 5&4& 1\\ & & -2 & -1&-2& -1\\ & -- & -- & -- & --\\ & 4 &2& 4& 2 & |\underline{0} \end{array}$ $-\frac{1}{2}$ is a zero, $f(x)=(x+\frac{1}{2})(4x^3+2x^2+4x+2)$, c. Factor the quadrinomial: $4x^3+2x^2+4x+2=2x^2(2x+1)+2(2x+1)=(2x^2+2)(2x+1)=2(x^2+1)(2x+1)$. Solve the equation $(2x+1)^2(x^2+1)=0$ $x\displaystyle \in\left\{ - i,i, -\frac{1}{2}\right\}$ The zero $-\frac{1}{2}$ has multiplicity $2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.