College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.5 - Complex Zeros and the Fundamental Theorem of Algebra - 3.5 Exercises - Page 330: 59

Answer

$x\displaystyle \in\{ -2i, 2i, 3\}$ The zero $3$ has multiplicity $2$

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f$ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^4-6x^{3}+13x^2-24x+36$ a. Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm 2, \pm3,\pm4,\pm6,\pm9,\pm12,\pm18,\pm36$ $q:\qquad \pm 1$ $\displaystyle \frac{p}{q}:\qquad\pm 1, \pm 2, \pm3,\pm4,\pm6,\pm9,\pm12,\pm18,\pm36$ b. Try for $x=3:$ $\begin{array}{lllll} \underline{3}| & 1 & -6 & 13 & -24& 36\\ & & 3 & -9 & 12& -36\\ & -- & -- & -- & --\\ & 1 & -3 & 4& -12 & |\underline{0} \end{array}$ $3$ is a zero, $f(x)=(x-3)(x^3-3x^{2} +4x-12)$ Try for $x=3$. $\begin{array}{lllll} \underline{3}| & 1 & -3 & 4& -12\\ & & 3 & 0& 12\\ & -- & -- & -- & --\\ & 1 & 0& 4 & |\underline{0} \end{array}$ $3$ is a zero, $f(x)=(x-3)^2(x^2+4)$, c. $x^2+4=0$, $x=\pm 2i$. $x\displaystyle \in\{ -2i, 2i, 3\}$ The zero $3$ has multiplicity $2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.