College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.5 - Complex Zeros and the Fundamental Theorem of Algebra - 3.5 Exercises - Page 330: 66

Answer

a. $P(x)=(x-2)(x^2+x+2)$, b. $P(x)=(x-2)\left(x+\frac{1-\sqrt {7}i}{2}\right)\left(x+\frac{1+\sqrt {7}i}{2}\right)$

Work Step by Step

a) Factor $P$ into linear and irreducible quadratic factors: See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f$ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $P(x)=x^3-2x-4$ Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1,\pm2,\pm4$ $q:\qquad \pm 1$ $\displaystyle \frac{p}{q}:\qquad\pm 1, \pm2,\pm4$ Try for $x=2$. $\begin{array}{lllll} \underline {2}| & 1& 0 & -2& -4\\ & & 2 & 4&4\\ & -- & -- & -- & --\\ & 1& 2& 2 & |\underline{0} \end{array}$ $2$ is a zero, $P(x)=(x-2)(x^2+x+2)$, b) Factor $P$ completely into linear factors: Solve $x^2+x+2=0$: $x=\frac{-1\pm\sqrt 7i}{2}$ The polynomial $P$ can be written: $P(x)=(x-2)\left(x+\frac{1-\sqrt {7}i}{2}\right)\left(x+\frac{1+\sqrt {7}i}{2}\right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.