College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.5 - Complex Zeros and the Fundamental Theorem of Algebra - 3.5 Exercises - Page 330: 55

Answer

$x\displaystyle \in\{-2, -3i, 3i, 1\}$

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f$ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^4+x^{3}+7x^2+9x-18$ a. candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm 2, \pm 3, \pm 6, \pm9, \pm18$ $q:\qquad \pm 1$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm 2, \pm 3, \pm 6, \pm9, \pm18$ b. Try for $x=1:$ $\begin{array}{lllll} \underline{1}| & 1 & 1 & 7 & 9& -18\\ & & 1 & 2 & 9& 18\\ & -- & -- & -- & --\\ & 1 & 2 & 9& 18 & |\underline{0} \end{array}$ $1$ is a zero, $f(x)=(x-1)(x^3+2x^{2} +9x+18)$ Try for $x=-2$. $\begin{array}{lllll} \underline{-2}| & 1 & 2 & 9& 18\\ & & -2 & 0& -18\\ & -- & -- & -- & --\\ & 1 & 0& 9 & |\underline{0} \end{array}$ $-2$ is a zero, $f(x)=(x-1)(x+2)(x^2+9)$, c. $x^2+9=0$, $x=\pm 3i$. $x\displaystyle \in\{-2, -3i, 3i, 1\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.