College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.5 - Complex Zeros and the Fundamental Theorem of Algebra - 3.5 Exercises - Page 330: 60

Answer

$x\displaystyle \in\{ 1 - i, 1 + i, -1\}$ The zero $-1$ has multiplicity $2$.

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f$ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^4-x^2+2x+2$ a. candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm 2$ $q:\qquad \pm 1$ $\displaystyle \frac{p}{q}:\qquad\pm 1, \pm 2$ b. Try for $x=-1:$ $\begin{array}{lllll} \underline{-1}| & 1 & 0 & -1 & 2& 2\\ & & -1 & 1 & 0& -2\\ & -- & -- & -- & --\\ & 1 & -1 & 0& 2 & |\underline{0} \end{array}$ $-1$ is a zero, $f(x)=(x+1)(x^3-x^{2} +2)$ Try for $x=-1$. $\begin{array}{lllll} \underline{-1}| & 1 & -1 & 0& 2\\ & & -1 & 2& -2\\ & -- & -- & -- & --\\ & 1 & -2& 2 & |\underline{0} \end{array}$ $-1$ is a zero, $f(x)=(x+1)^2(x^2-2x+2)$, c. Solve for the trinomial using the quadratic formula for the quadratic equation of $ax^2+bx+c$, $x=\frac{-b \pm \sqrt {b^2-4ac}}{2a}$ in this case, $x^2-2x+2$, $x=\frac{2 \pm \sqrt {(-2)^2-4 \times1 \times 2}}{2 \times 1}=\frac{2\pm2i}{2}=1\pm i$ $x\displaystyle \in\{ 1 - i, 1 + i, -1\}$ The zero $-1$ has multiplicity $2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.