College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.5 - Complex Zeros and the Fundamental Theorem of Algebra - 3.5 Exercises - Page 330: 48

Answer

$x\in\{2-i, 2+i, 3\}$

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f$ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^{3}-7x^{2}+17x-15$ a. Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm 3, \pm5, \pm15$ $q:\qquad \pm 1$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm 3,\pm5, \pm15$ b. Try for $x=3:$ $\begin{array}{lllll} \underline{3}| & 1 & -7 & 17 & -15\\ & & 3 & -12 & 15\\ & -- & -- & -- & --\\ & 1 & -4 & 5 & |\underline{0} \end{array}$ $3$ is a zero, $f(x)=(x-3)(x^{2} -4x+5)$ c. Solve for the trinomial using the quadratic formula for the quadratic equation of $ax^2+bx+x$, $x=\frac{-b\pm \sqrt {b^2-4ac}}{2a}$, in this case, $x^2-4x+5$, $x=\frac{4\pm \sqrt {(-4)^2-4\times 1\times 5}}{2\times 1}=\frac{4\pm 2i}{2}=2 \pm i$ $x\in\{2-i, 2+i, 3\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.