College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.5 - Complex Zeros and the Fundamental Theorem of Algebra - 3.5 Exercises - Page 330: 58

Answer

$x\in \{-2, -i, i, 1-\sqrt {3}i, 1+\sqrt {3}i\}$

Work Step by Step

$P(x)=x^5+x^3+8x^2+8$, factoring the polynomial, $x^3(x^2+1)+8(x^2+1)=(x^3+8)(x^2+1)=(x+2)(x^2-2x+4)(x^2+1)$, $x+2=0,x=-2$ or $x^2+1=0, x=\pm i$ solving for the trinomial using quadratic formula for the quadratic function of $ax^2+bx+c, x=\frac{-b\pm \sqrt {b^2-4ac}}{2a}$. In this case $x^2-2x+4$, $\frac{2\pm \sqrt {(-2)^2-4\times1\times4}}{2\times1}=\frac{2\pm 2\sqrt {3}i}{2}=1\pm\sqrt {3}i$. thus, $x\in \{-2, -i, i, 1-\sqrt {3}i, 1+\sqrt {3}i\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.