College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.5 - Complex Zeros and the Fundamental Theorem of Algebra - 3.5 Exercises - Page 330: 62

Answer

$x\displaystyle \in\left\{-\frac{1}{2}, \frac{-1 - i}{2},\frac{-1 + i}{2}, 1\right\}$

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f$ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=4x^4+2x^3-2x^2-3x-1$ a. Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1$ $q:\qquad \pm 1, \pm 2,\pm 4$ $\displaystyle \frac{p}{q}:\qquad\pm 1 \pm \frac{1}{2}, \pm \frac{1}{4}$ b. Try for $x=1:$ $\begin{array}{lllll} \underline{1}| & 4 & 2 & -2 & -3& -1\\ & & 4 & 6 & 4& 1\\ & -- & -- & -- & --\\ & 4& 6& 4& 1 & |\underline{0} \end{array}$ $1$ is a zero, $f(x)=(x-1)(4x^3+6x^{2}+4x +1)$ Try for $x=-\frac{1}{2}$. $\begin{array}{lllll} \underline{-\frac{1}{2}}| & 4 & 6 & 4& 1\\ & & -2 & -2& -1\\ & -- & -- & -- & --\\ & 4 & 4& 2 & |\underline{0} \end{array}$ $-\frac{1}{2}$ is a zero, $f(x)=(x-1)(x+\frac{1}{2})(4x^2+4x+2)$, c. Solve for the trinomial using the quadratic formula for the quadratic equation of $ax^2+bx+c$, $x=\frac{-b \pm \sqrt {b^2-4ac}}{2a}$ in this case, $4x^2+4x+2$, $x=\frac{-4 \pm \sqrt {4^2-4 \times4 \times 2}}{2 \times 4}=\frac{-4\pm4i}{8}=\frac{-1\pm i}{2}$ $x\displaystyle \in\left\{-\frac{1}{2}, \frac{-1 - i}{2},\frac{-1 + i}{2}, 1\right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.