College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.5 - Complex Zeros and the Fundamental Theorem of Algebra - 3.5 Exercises - Page 330: 53

Answer

$x\displaystyle \in\left\{-1- \sqrt 2i, -1+ \sqrt 2i, -\frac{3}{2} \right\}$

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f$ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=2x^{3}+7x^2+12x+9$ a. candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm 2, \pm 3, \pm 9, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{9}{2}$ $q:\qquad \pm 1, \pm 2$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm 2, \pm 3, \pm 9, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{9}{2}$ b. Try for $x=-\frac{3}{2}:$ $\begin{array}{lllll} \underline{-\frac{3}{2}}| & 2 & 7 & 12 & 9\\ & & -3 & -6 & -9\\ & -- & -- & -- & --\\ & 2 & 4 & 6 & |\underline{0} \end{array}$ $-\frac{3}{2}$ is a zero, $f(x)=(x+\frac{3}{2})(2x^{2} +4x+6)$ c. Solve for the trinomial using the quadratic formula for the quadratic equation of $ax^2+bx+c$, $x=\frac{-b \pm \sqrt {b^2-4ac}}{2a}$. in this case, $2x^2+4x+6$, $x=\frac{-4 \pm \sqrt {4^2-4\times 2\times 6}}{2\times 2}=\frac{-4\pm 4\sqrt {2}i}{4}=-1\pm \sqrt 2i$ $x\displaystyle \in\left\{-1- \sqrt 2i, -1+ \sqrt 2i, -\frac{3}{2} \right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.