College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.5 - Complex Zeros and the Fundamental Theorem of Algebra - 3.5 Exercises - Page 330: 56

Answer

$x\displaystyle \in\{-1, -i, i, 3\}$

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f$ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^4-2x^{3}-2x^2-2x-3$ a. Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm 3$ $q:\qquad \pm 1$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm 3$ b. Try for $x=-1:$ $\begin{array}{lllll} \underline{-1}| & 1 & -2 & -2 & -2& -3\\ & & -1 & 3 & -1& 3\\ & -- & -- & -- & --\\ & 1 & -3 & 1& -3 & |\underline{0} \end{array}$ $-1$ is a zero, $f(x)=(x+1)(x^3-3x^{2} +x-3)$ Try for $x=-1$. $\begin{array}{lllll} \underline{3}| & 1 & -3 & 1& -3\\ & & 3 & 0& 3\\ & -- & -- & -- & --\\ & 1 & 0& 1 & |\underline{0} \end{array}$ $3$ is a zero, $f(x)=(x+1)(x-3)(x^2+1)$, c. $x^2+1=0$, $x=\pm 1i$. $x\displaystyle \in\{-1, -i, i, 3\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.