Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 768: 81

Answer

Solutions of the provided equation in polar form are $\begin{align} & \sqrt[6]{1}\left[ \cos 0{}^\circ +i\sin 0{}^\circ \right],\sqrt[6]{1}\left[ \cos 60{}^\circ +i\sin 60{}^\circ \right],\sqrt[6]{1}\left[ \cos 120{}^\circ +i\sin 120{}^\circ \right], \\ & \sqrt[6]{1}\left[ \cos 180{}^\circ +i\sin 180{}^\circ \right],\sqrt[6]{1}\left[ \cos \left( 240{}^\circ \right)+i\sin \left( 240{}^\circ \right) \right],\sqrt[6]{1}\left[ \cos \left( 300{}^\circ \right)+i\sin \left( 300{}^\circ \right) \right] \\ \end{align}$ Solutions of the provided equation in rectangular form are $1.0,\frac{1}{2}+i\frac{\sqrt{3}}{2},-\frac{1}{2}+i\frac{\sqrt{3}}{2},-1,-\frac{1}{2}-\frac{\sqrt{3}}{2}i,\frac{1}{2}-\frac{\sqrt{3}}{2}i$

Work Step by Step

Solution of equation in complex number system can be found by application of DeMoivre’s theorem. DeMoivre’s theorem for finding complex roots states that every complex number has two distinct complex square roots, three distinct complex cube roots, four distinct complex fourth roots, and so on. Each root has the same modulus. $\begin{align} & r=z_{k}^{n} \\ & {{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +360{}^\circ k}{n} \right)+i\sin \left( \frac{\theta +360{}^\circ k}{n} \right) \right] \\ \end{align}$ Where $k$ is the number of distinct ${{n}^{th}}$ solution and $\theta $ is in degree. There are exactly six solutions of the provided equation as degree of equation is $6$. $\begin{align} & {{x}^{6}}=1 \\ & \sqrt[6]{{{x}^{6}}}=\sqrt[6]{1} \\ & x=1 \end{align}$ The expression given above can be written in rectangular form as $x=1+0i$ Convert the above expression into polar form as $\begin{align} & 1+0i=r\left( \cos \theta +i\sin \theta \right) \\ & =1\left( \cos 0{}^\circ +i\sin 0{}^\circ \right) \end{align}$ Apply Demoivre’s theorem to find all solutions of the provided equation. Here, $n=6$, as the number of solutions is six. $\begin{align} & {{z}_{k}}=\sqrt[6]{1}\left[ \cos \left( \frac{0+360{}^\circ \cdot k}{6} \right)+i\sin \left( \frac{0+360{}^\circ \cdot k}{6} \right) \right] \\ & =\sqrt[6]{1}\left[ \cos \left( \frac{0+360{}^\circ \cdot k}{6} \right)+i\sin \left( \frac{0+360{}^\circ \cdot k}{6} \right) \right] \end{align}$ Here, $k=0,1,2,3,4,5$. Insert the above values of $k$ to find six distinct solutions of the provided equation. For $k=0$ $\begin{align} & {{z}_{0}}=\sqrt[6]{1}\left[ \cos \left( \frac{0+360{}^\circ \cdot \left( 0 \right)}{6} \right)+i\sin \left( \frac{0+360{}^\circ \cdot \left( 0 \right)}{6} \right) \right] \\ & =\sqrt[6]{1}\left[ \cos 0{}^\circ +i\sin 0{}^\circ \right] \end{align}$ Above solution is in the polar form. Substitute the value of $\cos 0{}^\circ $ and $\sin 0{}^\circ $ to find solution in rectangular form. $\begin{align} & {{z}_{0}}=\sqrt[6]{1}\left[ 1.00+i0.00 \right] \\ & =1.00+i0.00 \\ & =1.0 \end{align}$ For $k=1$ $\begin{align} & {{z}_{1}}=\sqrt[6]{1}\left[ \cos \left( \frac{0+360{}^\circ \cdot \left( 1 \right)}{6} \right)+i\sin \left( \frac{0+360{}^\circ \cdot \left( 1 \right)}{6} \right) \right] \\ & =\sqrt[6]{1}\left[ \cos 60{}^\circ +i\sin 60{}^\circ \right] \end{align}$ Above solution is in the polar form. Substitute the value of $\cos \left( 60{}^\circ \right)$ and $\sin \left( 60{}^\circ \right)$ to find solution in rectangular form. $\begin{align} & {{z}_{1}}=\sqrt[6]{1}\left[ \frac{1}{2}+i\frac{\sqrt{3}}{2} \right] \\ & =\frac{1}{2}+i\frac{\sqrt{3}}{2} \end{align}$ For $k=2$ $\begin{align} & {{z}_{2}}=\sqrt[6]{1}\left[ \cos \left( \frac{0+360{}^\circ \cdot \left( 2 \right)}{6} \right)+i\sin \left( \frac{0+360{}^\circ \cdot \left( 2 \right)}{6} \right) \right] \\ & =\sqrt[6]{1}\left[ \cos 120{}^\circ +i\sin 120{}^\circ \right] \end{align}$ Above solution is in the polar form. Substitute the value of $\cos \left( 120{}^\circ \right)$ and $\sin \left( 120{}^\circ \right)$ to find solution in rectangular form. $\begin{align} & {{z}_{2}}=\sqrt[6]{1}\left[ -\frac{1}{2}+i\frac{\sqrt{3}}{2} \right] \\ & =-\frac{1}{2}+i\frac{\sqrt{3}}{2} \end{align}$ For $k=3$ $\begin{align} & {{z}_{3}}=\sqrt[6]{1}\left[ \cos \left( \frac{0+360{}^\circ \cdot \left( 3 \right)}{6} \right)+i\sin \left( \frac{0+360{}^\circ \cdot \left( 3 \right)}{6} \right) \right] \\ & =\sqrt[6]{1}\left[ \cos 180{}^\circ +i\sin 180{}^\circ \right] \end{align}$ Above solution is in the polar form. Substitute the value of $\cos \left( 180{}^\circ \right)$ and $\sin \left( 180{}^\circ \right)$ to find solution in rectangular form. $\begin{align} & {{z}_{3}}=\sqrt[6]{1}\left[ -1+i0 \right] \\ & =-1 \end{align}$ For $k=4$ $\begin{align} & {{z}_{4}}=\sqrt[6]{1}\left[ \cos \left( \frac{0+360{}^\circ \cdot \left( 4 \right)}{6} \right)+i\sin \left( \frac{0+360{}^\circ \cdot \left( 4 \right)}{6} \right) \right] \\ & =\sqrt[6]{1}\left[ \cos \left( 240{}^\circ \right)+i\sin \left( 240{}^\circ \right) \right] \end{align}$ Above solution is in the polar form. Substitute the value of $\cos \left( 240{}^\circ \right)$ and $\sin \left( 240{}^\circ \right)$ to find solution in rectangular form. $\begin{align} & {{z}_{4}}=\sqrt[6]{1}\left[ -\frac{1}{2}+i\left( -\frac{\sqrt{3}}{2} \right) \right] \\ & =-\frac{1}{2}-\frac{\sqrt{3}}{2}i \end{align}$ For $k=5$ $\begin{align} & {{z}_{5}}=\sqrt[6]{1}\left[ \cos \left( \frac{0+360{}^\circ \cdot \left( 5 \right)}{6} \right)+i\sin \left( \frac{0+360{}^\circ \cdot \left( 5 \right)}{6} \right) \right] \\ & =\sqrt[6]{1}\left[ \cos \left( 300{}^\circ \right)+i\sin \left( 300{}^\circ \right) \right] \end{align}$ Above solution is in the polar form. Substitute the value of $\cos \left( 300{}^\circ \right)$ and $\sin \left( 300{}^\circ \right)$ to find solution in rectangular form. $\begin{align} & {{z}_{5}}=\sqrt[6]{1}\left[ \frac{1}{2}+i\left( -\frac{\sqrt{3}}{2} \right) \right] \\ & =\frac{1}{2}-\frac{\sqrt{3}}{2}i \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.