Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 768: 54

Answer

$4\sqrt{3}+4i$.

Work Step by Step

Here $\begin{align} & z={{\left[ 2\left( \cos {{10}^{{}^\circ }}+i\sin {{10}^{{}^\circ }} \right) \right]}^{3}} \\ & z={{2}^{3}}\left( \cos 3\times {{10}^{{}^\circ }}+i\sin 3\times {{10}^{{}^\circ }} \right) \\ & z=8\left( \cos {{30}^{{}^\circ }}+i\sin {{30}^{{}^\circ }} \right) \\ & z=8\left( \frac{\sqrt{3}}{2}+i\frac{1}{2} \right) \\ \end{align}$ Simplifying it further, to get, $z=4\sqrt{3}+4i$ The power of the complex number in the rectangular form is $4\sqrt{3}+4i$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.