Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 768: 62

Answer

The power of the complex number in the rectangular form is $z=-4+4i$.

Work Step by Step

Consider the given complex number and write it in the polar form, $z={{\left( 1-i \right)}^{5}}$ For a complex number ${{z}_{1}}=x+iy=1-i$, the polar form is given by, ${{z}_{1}}=r\left( \cos \theta +i\sin \theta \right)$ We have, $x=1=r\cos \theta \,y=-1=r\sin \theta $, where $\begin{align} & r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\ & r=\sqrt{{{\left( 1 \right)}^{2}}+{{\left( -1 \right)}^{2}}} \\ & r=\sqrt{1+1} \\ & r=\sqrt{2} \\ \end{align}$ $r=\sqrt{2}$ Therefore $\begin{align} & 1=\sqrt{2}\cos \theta \,-1=\sqrt{2}\sin \theta \\ & i.e,\frac{1}{\sqrt{2}}=\cos \theta \,-\frac{1}{\sqrt{2}}=\sin \theta \\ \end{align}$ Which gives $\theta =-\frac{\pi }{4}$ ${{z}_{1}}=\sqrt{2}\left( \cos (-\frac{\pi }{4})+i\sin (-\frac{\pi }{4}) \right)$ The polar form of the complex number is $z={{\left[ \sqrt{2}\left( \cos (-\frac{\pi }{4})+i\sin (-\frac{\pi }{4}) \right) \right]}^{5}}$ Therefore $\begin{align} & z={{\left[ \sqrt{2}\left( \cos (-\frac{\pi }{4})+i\sin (-\frac{\pi }{4}) \right) \right]}^{5}} \\ & z={{\left( \sqrt{2} \right)}^{5}}\left( \cos 5\times (-\frac{\pi }{4})+i\sin 5\times (-\frac{\pi }{4}) \right) \\ & z=4\sqrt{2}\left( \cos (-\frac{5\pi }{4})+i\sin (-\frac{5\pi }{4}) \right) \\ & z=4\sqrt{2}\left( \cos \frac{5\pi }{4}-i\sin \frac{5\pi }{4} \right) \\ \end{align}$ Simplify it further to get, $\begin{align} & z=4\sqrt{2}\left( -\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}} \right) \\ & z=-4+4i \\ \end{align}$ The complex number in the rectangular form is $-4+4i$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.