Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 768: 48

Answer

The division of the complex numbers in the polar form is $\frac{3}{10}\left( \cos \frac{31\pi }{144}+i\sin \frac{31\pi }{144} \right)$.

Work Step by Step

Here, $\begin{align} & {{z}_{1}}=3\left( \cos \frac{5\pi }{18}+i\sin \frac{5\pi }{18} \right) \\ & {{z}_{2}}=10\left( \cos \frac{\pi }{16}+i\sin \frac{\pi }{16} \right) \\ \end{align}$ Therefore, $\begin{align} & \frac{{{z}_{1}}}{{{z}_{2}}}=\frac{3}{10}\left( \cos \left( \frac{5\pi }{18}-\frac{\pi }{16} \right)+i\sin \left( \frac{5\pi }{18}-\frac{\pi }{16} \right) \right) \\ & =\frac{3}{10}\left( \cos \frac{31\pi }{144}+i\sin \frac{31\pi }{144} \right) \end{align}$ The division of the complex numbers in the polar form is $\frac{3}{10}\left( \cos \frac{31\pi }{144}+i\sin \frac{31\pi }{144} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.