Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 768: 53

Answer

$32\sqrt{2}+i32\sqrt{2}$.

Work Step by Step

Here, $z={{\left[ 4\left( \cos {{15}^{{}^\circ }}+i\sin {{15}^{{}^\circ }} \right) \right]}^{3}}$ $\begin{align} & z={{4}^{3}}\left( \cos 3\times {{15}^{{}^\circ }}+i\sin 3\times {{15}^{{}^\circ }} \right) \\ & z=64\left( \cos {{45}^{{}^\circ }}+i\sin {{45}^{{}^\circ }} \right) \\ & z=64\left( \frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}} \right) \\ \end{align}$ Simplifying it further, to get, $z=32\sqrt{2}+i32\sqrt{2}$ Therefore the complex number in the rectangular form is $32\sqrt{2}+i32\sqrt{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.