Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 768: 49

Answer

The division of the complex numbers in the polar form is $\cos 240{}^\circ +i\sin 240{}^\circ $.

Work Step by Step

Here, $\begin{align} & {{z}_{1}}=\cos 80{}^\circ +i\sin 80{}^\circ \\ & {{z}_{2}}=\cos 200{}^\circ +i\sin 200{}^\circ \\ \end{align}$ Therefore, $\begin{align} & \frac{{{z}_{1}}}{{{z}_{2}}}=\frac{1}{1}\left( \cos \left( 80{}^\circ -200{}^\circ \right)+i\sin \left( 80{}^\circ -200{}^\circ \right) \right) \\ & =1\left( \cos \left( -120 \right){}^\circ +i\sin \left( -120 \right){}^\circ \right) \\ & =\cos 240{}^\circ +i\sin 240{}^\circ \end{align}$ The division of the complex numbers in the polar form is $\cos 240{}^\circ +i\sin 240{}^\circ $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.