Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 768: 45

Answer

The division of the complex numbers in the polar form is $5\left( \cos 50{}^\circ +i\sin 50{}^\circ \right)$

Work Step by Step

Here, $\begin{align} & {{z}_{1}}=20\left( \cos 75{}^\circ +i\sin 75{}^\circ \right) \\ & {{z}_{2}}=4\left( \cos 25{}^\circ +i\sin 25{}^\circ \right) \\ \end{align}$ Therefore, $\begin{align} & \frac{{{z}_{1}}}{{{z}_{2}}}=\frac{20}{4}\left( \cos \left( 75{}^\circ -25{}^\circ \right)+i\sin \left( 75{}^\circ -25{}^\circ \right) \right) \\ & =5\left( \cos 50{}^\circ +i\sin 50{}^\circ \right) \end{align}$ The division of the complex numbers in the polar form is $5\left( \cos 50{}^\circ +i\sin 50{}^\circ \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.