Answer
The division of the complex numbers in the polar form is $5\left( \cos 50{}^\circ +i\sin 50{}^\circ \right)$
Work Step by Step
Here,
$\begin{align}
& {{z}_{1}}=20\left( \cos 75{}^\circ +i\sin 75{}^\circ \right) \\
& {{z}_{2}}=4\left( \cos 25{}^\circ +i\sin 25{}^\circ \right) \\
\end{align}$
Therefore,
$\begin{align}
& \frac{{{z}_{1}}}{{{z}_{2}}}=\frac{20}{4}\left( \cos \left( 75{}^\circ -25{}^\circ \right)+i\sin \left( 75{}^\circ -25{}^\circ \right) \right) \\
& =5\left( \cos 50{}^\circ +i\sin 50{}^\circ \right)
\end{align}$
The division of the complex numbers in the polar form is $5\left( \cos 50{}^\circ +i\sin 50{}^\circ \right)$