Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 768: 60

Answer

The power of the complex number in the rectangular form is $z=\frac{27}{2}-i\frac{27\sqrt{3}}{2}$.

Work Step by Step

Here, $z={{\left[ \sqrt{3}\left( \cos \frac{5\pi }{18}+i\sin \frac{5\pi }{18} \right) \right]}^{6}}$ Therefore, $\begin{align} & z={{\left[ \sqrt{3}\left( \cos \frac{5\pi }{18}+i\sin \frac{5\pi }{18} \right) \right]}^{6}} \\ & z={{\left( \sqrt{3} \right)}^{6}}\left( \cos 6\times \frac{5\pi }{18}+i\sin 6\times \frac{5\pi }{6} \right) \\ & z=27\left( \cos \frac{5\pi }{3}+i\sin \frac{5\pi }{3} \right) \\ \end{align}$ Simplify it further to get, $\begin{align} & z=27\left( \frac{1}{2}-i\frac{\sqrt{3}}{2} \right) \\ & z=\frac{27}{2}-i\frac{27\sqrt{3}}{2} \\ \end{align}$ The power of the complex number in the rectangular form is $z=\frac{27}{2}-i\frac{27\sqrt{3}}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.