Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 768: 74

Answer

The complex cube roots of the given complex numbers in rectangular form are, ${{z}_{0}}=\frac{\sqrt{3}}{2}+\frac{1}{2}i,\ {{z}_{1}}=-\frac{\sqrt{3}}{2}+\frac{1}{2}i,\ {{z}_{2}}=0-1i$.

Work Step by Step

Consider the given complex number to write in the polar form, $z=0+i$ ...... (1) For a complex number $z=x+iy$, the polar form is given by, $z=r\left( \cos \theta +i\sin \theta \right)$ ...... (2) Here, $x=r\cos \theta \ \text{ and }\ y=r\sin \theta $, dividing the value of y by x, to get, $\tan \theta =\frac{y}{x}$ ...... (3) Also, the value of r is called the moduli of the complex number, given by, $r=\sqrt{{{x}^{2}}+{{y}^{2}}}=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( 1 \right)}^{2}}}=\sqrt{0+1}=1$ For any complex number $z=x+iy$, the sign of the value of x and y determine in which quadrant the value of $z=x+iy$ would lie. If the value of x is on the positive side and the value of y is positive, then the angle $\theta $ lies in the first quadrant having the value of $\theta $ as $\theta $. If the value of x lies on the negative side and the value of y is positive, then the angle $\theta $ lies in the second quadrant having the value of $\theta $ as $\pi -\theta $. If the value of x lies on the negative side and the value of y is positive, then the angle $\theta $ lies in the second quadrant having the value of $\theta $ as $\pi +\theta $. If the value of x is on the positive side and the value of y is negative, then the angle $\theta $ lies in the fourth quadrant having the value of $\theta $ as $2\pi -\theta $. For the given complex number, using (1), (3) to get, $\tan \theta =\frac{y}{x}=\frac{1}{0}=\text{Undefined}$ For the given complex number, $\theta =\frac{\pi }{2}$ Using (2), to get, $z=\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)$ The polar form of the complex number is, $z=\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)$ Consider the given complex number, $z=\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)$ For any complex number of the type, $z=r\cos \theta +i\sin \theta $ If n is a positive integer, then ${{z}^{n}}$ is, ${{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +2\pi k}{n} \right)+i\sin \left( \frac{\theta +2\pi k}{n} \right) \right]$ ...... (4) Now, for the given complex number, using (4) to get, $\begin{align} & {{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +2\pi k}{n} \right)+i\sin \left( \frac{\theta +2\pi k}{n} \right) \right] \\ & {{z}_{0}}=\sqrt[3]{1}\left[ \cos \frac{\frac{\pi }{2}+2\pi \times 0}{3}+i\sin \frac{\frac{\pi }{2}+2\pi \times 0}{3} \right] \\ & {{z}_{0}}=1\left[ \cos \frac{\pi }{6}+i\sin \frac{\pi }{6} \right] \\ & {{z}_{0}}=\frac{\sqrt{3}}{2}+\frac{1}{2}i \\ \end{align}$ Now, for the other roots, substituting the value of $k=0,1,2$ That is., $\begin{align} & {{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +2\pi k}{n} \right)+i\sin \left( \frac{\theta +2\pi k}{n} \right) \right] \\ & {{z}_{1}}=\sqrt[3]{1}\left[ \cos \frac{\frac{\pi }{2}+2\pi \times 1}{3}+i\sin \frac{\frac{\pi }{2}+2\pi \times 1}{3} \right] \\ & {{z}_{1}}=1\left[ \cos \frac{5\pi }{3}+i\sin \frac{5\pi }{3} \right] \\ & {{z}_{1}}=-\frac{\sqrt{3}}{2}+\frac{1}{2}i \\ \end{align}$ Similarly, $\begin{align} & {{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +2\pi k}{n} \right)+i\sin \left( \frac{\theta +2\pi k}{n} \right) \right] \\ & {{z}_{2}}=\sqrt[3]{1}\left[ \cos \frac{\frac{\pi }{2}+2\pi \times 2}{3}+i\sin \frac{\frac{\pi }{2}+2\pi \times 2}{3} \right]\ \ \ \\ & {{z}_{2}}=1\left[ \cos \frac{9\pi }{3}+i\sin \frac{9\pi }{3} \right] \\ & {{z}_{2}}=-i \\ \end{align}$ Therefore, the cube roots of the complex numbers in the polar form are, ${{z}_{0}}=\frac{\sqrt{3}}{2}+\frac{1}{2}i,\ {{z}_{1}}=-\frac{\sqrt{3}}{2}+\frac{1}{2}i,\ {{z}_{2}}=0-1i$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.