Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 768: 77

Answer

$\begin{align} & \left[ 1\left( \cos \,90{}^\circ +i\,\sin \,90{}^\circ \right) \right]\left[ 2\sqrt{2}\left( \cos \,45{}^\circ +i\,\sin \,45{}^\circ \right) \right]\left[ 2\left( \cos \,150{}^\circ +i\,\sin \,150{}^\circ \right) \right]; \\ & 4\sqrt{2}\left( \cos \,285{}^\circ +i\,\sin \,285{}^\circ \right);\ \approx 1.4641-5.4641i \\ \end{align}$

Work Step by Step

Consider the provided expression $z=i\left( 2+2i \right)\left( -\sqrt{3}+i \right)$ First convert it into polar form: $\begin{align} & z=i\left( 2+2i \right)\left( -\sqrt{3}+i \right) \\ & =\left[ 1\left( \cos \,90{}^\circ +i\,\sin \,90{}^\circ \right) \right]\left[ 2\sqrt{2}\left( \cos \,45{}^\circ +i\,\sin \,45{}^\circ \right) \right]\left[ 2\left( \cos \,150{}^\circ +i\,\sin \,150{}^\circ \right) \right] \end{align}$ Apply the multiplication rule of complex numbers: $\begin{align} & z=\left( 1\times 2\sqrt{2}\times 2 \right)\left( \cos \left( 90{}^\circ +45{}^\circ +150{}^\circ \right)+i\,\sin \left( 90{}^\circ +45{}^\circ +150{}^\circ \right) \right) \\ & =4\sqrt{2}\left( \cos \,285{}^\circ +i\,\sin \,285{}^\circ \right) \end{align}$ The above expression is the polar form of the provided expression. Convert it into rectangular form: $z=4\sqrt{2}\left( \cos \,285{}^\circ +i\,\sin \,285{}^\circ \right)$ Substitute the values of $\cos \,285{}^\circ $ and $\sin \,285{}^\circ $ in the above expression: $\begin{align} & z=4\sqrt{2}\left( 0.2588-i0.9659 \right) \\ & =1.4641-i5.4641 \end{align}$ The above expression is the rectangular form of the provided expression is: The polar form of the provided expression is $4\sqrt{2}\left( \cos \,285{}^\circ +i\,\sin \,285{}^\circ \right)$. The rectangular form of the provided expression is $\approx 1.4641-i5.4641$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.