Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 768: 67

Answer

The complex cube root of the given complex numbers in polar form are, $2\left[ \cos 310{}^\circ +i\sin 310{}^\circ \right],\text{ }2\left[ \cos 70{}^\circ +i\sin 70{}^\circ \right],\text{ }2\left[ \cos 190{}^\circ +i\sin \cos 190{}^\circ \right]$.

Work Step by Step

Consider the given complex number, $8\left( \cos 210{}^\circ +i\sin 210{}^\circ \right)$ For any complex number of the type, $z=r\cos \theta +i\sin \theta $ If n is a positive integer, then ${{z}^{n}}$ is, ${{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +360{}^\circ k}{n} \right)+i\sin \left( \frac{\theta +360{}^\circ k}{n} \right) \right]$ ......(1) Now, for the given complex number, using (1) to get, $\begin{align} & {{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +360{}^\circ }{n} \right)+i\sin \left( \frac{\theta +360{}^\circ }{n} \right) \right] \\ & {{z}_{1}}=\sqrt[3]{8}\left[ \cos \left( \frac{210{}^\circ +360{}^\circ }{3} \right)+i\sin \left( \frac{210{}^\circ +360{}^\circ }{3} \right) \right] \\ & =2\left[ \cos \left( \frac{570{}^\circ }{3} \right)+i\sin \left( \frac{570{}^\circ }{3} \right) \right] \\ & =2\left[ \cos 190{}^\circ +i\sin 190{}^\circ \right] \end{align}$ Similarly, for the other root, $\begin{align} & {{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +360{}^\circ k}{n} \right)+i\sin \left( \frac{\theta +360{}^\circ k}{n} \right) \right] \\ & {{z}_{0}}=\sqrt[3]{8}\left[ \cos \left( \frac{210{}^\circ +360{}^\circ \times 0}{3} \right)+i\sin \left( \frac{210{}^\circ +360{}^\circ \times 0}{3} \right) \right] \\ & =2\left[ \cos \frac{210{}^\circ }{3}+i\sin \frac{210{}^\circ }{3} \right] \\ & =2\left[ \cos 70{}^\circ +i\sin 70{}^\circ \right] \end{align}$ Similarly, for the other root, $\begin{align} & {{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +360{}^\circ k}{n} \right)+i\sin \left( \frac{\theta +360{}^\circ k}{n} \right) \right] \\ & {{z}_{2}}=\sqrt[3]{8}\left[ \cos \left( \frac{210{}^\circ +360{}^\circ \times 2}{3} \right)+i\sin \left( \frac{210{}^\circ +360{}^\circ \times 2}{3} \right) \right] \\ & =2\left[ \cos \frac{930{}^\circ }{3}+i\sin \frac{930{}^\circ }{3} \right] \\ & =2\left[ \cos 310{}^\circ +i\sin 310{}^\circ \right] \end{align}$ Therefore, The complex cube root of the given complex numbers in polar form are, $2\left[ \cos 310{}^\circ +i\sin 310{}^\circ \right],\text{ }2\left[ \cos 70{}^\circ +i\sin 70{}^\circ \right],\text{ }2\left[ \cos 190{}^\circ +i\sin \cos 190{}^\circ \right]$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.