Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 768: 69

Answer

The complex fourth roots of the given complex numbers in rectangular form are, ${{z}_{0}}=\frac{3}{2}+i\frac{3\sqrt{3}}{2},{{z}_{1}}=-\frac{3\sqrt{3}}{2}+\frac{3}{2}i,\text{ }{{z}_{2}}=-\frac{3}{2}-\frac{3\sqrt{3}}{2}i\text{ and }{{z}_{3}}=\frac{3\sqrt{3}}{2}-\frac{3}{2}i$.

Work Step by Step

Consider the given complex number, $81\left( \cos \frac{4\pi }{3}+i\cos \frac{4\pi }{3} \right)$ For any complex number of the type, $z=r\cos \theta +i\sin \theta $ If n is a positive integer, then ${{z}^{n}}$ is, ${{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +2\pi k}{n} \right)+i\sin \left( \frac{\theta +2\pi k}{n} \right) \right]$ ...... (1) Now, for the given complex number, use (1) to get, $\begin{align} & {{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +2\pi k}{n} \right)+i\sin \left( \frac{\theta +2\pi k}{n} \right) \right] \\ & {{z}_{0}}=\sqrt[4]{81}\left[ \cos \frac{\frac{4\pi }{3}+2\pi \times 0}{4}+i\sin \frac{\frac{4\pi }{3}+2\pi \times 0}{4} \right] \\ & {{z}_{0}}=3\left[ \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right] \\ & {{z}_{0}}=\frac{3}{2}+i\frac{3\sqrt{3}}{2} \\ \end{align}$ Now, for the other roots, substitute the value of $k=0,1,2,3...$ That is, $\begin{align} & {{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +2\pi k}{n} \right)+i\sin \left( \frac{\theta +2\pi k}{n} \right) \right] \\ & {{z}_{1}}=\sqrt[4]{81}\left[ \cos \frac{\frac{4\pi }{3}+2\pi \times 1}{4}+i\sin \frac{\frac{4\pi }{3}+2\pi \times 1}{4} \right] \\ & {{z}_{1}}=3\left[ \cos \frac{5\pi }{6}+i\sin \frac{5\pi }{6} \right] \\ & {{z}_{1}}=-\frac{3\sqrt{3}}{2}+\frac{3}{2}i \\ \end{align}$ Similarly, $\begin{align} & {{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +2\pi k}{n} \right)+i\sin \left( \frac{\theta +2\pi k}{n} \right) \right] \\ & {{z}_{2}}=\sqrt[4]{81}\left[ \cos \frac{\frac{4\pi }{3}+2\pi \times 2}{4}+i\sin \frac{\frac{4\pi }{3}+2\pi \times 2}{4} \right] \\ & {{z}_{2}}=3\left[ \cos \frac{4\pi }{3}+i\sin \frac{4\pi }{3} \right] \\ & {{z}_{2}}=-\frac{3}{2}-\frac{3\sqrt{3}}{2}i \\ \end{align}$ Also, $\begin{align} & {{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +2\pi k}{n} \right)+i\sin \left( \frac{\theta +2\pi k}{n} \right) \right] \\ & {{z}_{3}}=\sqrt[4]{81}\left[ \cos \frac{\frac{4\pi }{3}+2\pi \times 3}{4}+i\sin \frac{\frac{4\pi }{3}+2\pi \times 3}{4} \right] \\ & {{z}_{3}}=3\left[ \cos \frac{11\pi }{6}+i\sin \frac{11\pi }{6} \right] \\ & {{z}_{3}}=\frac{3\sqrt{3}}{2}-\frac{3}{2}i \\ \end{align}$ The fourth roots of the complex numbers in the polar form are, ${{z}_{0}}=\frac{3}{2}+i\frac{3\sqrt{3}}{2},{{z}_{1}}=-\frac{3\sqrt{3}}{2}+\frac{3}{2}i,\text{ }{{z}_{2}}=-\frac{3}{2}-\frac{3\sqrt{3}}{2}i\text{ and }{{z}_{3}}=\frac{3\sqrt{3}}{2}-\frac{3}{2}i$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.