Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 768: 78

Answer

$\begin{align} & \left[ \sqrt{2}\left( \cos 45{}^\circ +i\sin 45{}^\circ \right) \right]\left[ 2\left( \cos 300{}^\circ +\sin 300{}^\circ \right) \right]\left[ 2\left( \cos 150{}^\circ +i\sin 150{}^\circ \right) \right]; \\ & 4\sqrt{2}\left( \cos 135{}^\circ +i\sin 135{}^\circ \right);\approx -4.0+4.0i \\ \end{align}$

Work Step by Step

Consider the expression $z=\left( 1+i \right)\left( 1-i\sqrt{3} \right)\left( -\sqrt{3}+i \right)$ First, convert it into polar form: $\begin{align} & z=\left( 1+i \right)\left( 1-i\sqrt{3} \right)\left( -\sqrt{3}+i \right) \\ & =\left[ \sqrt{2}\left( \cos 45{}^\circ +i\sin 45{}^\circ \right) \right]\left[ 2\left( \cos 300{}^\circ +\sin 300{}^\circ \right) \right]\left[ 2\left( \cos 150{}^\circ +i\sin 150{}^\circ \right) \right] \end{align}$ Apply the multiplication rule of complex numbers: $\begin{align} & z=\left( \sqrt{2}\times 2\times 2 \right)\left( \cos \left( 45{}^\circ +300{}^\circ +150{}^\circ \right)+i\sin \left( 45{}^\circ +300{}^\circ +150{}^\circ \right) \right) \\ & =4\sqrt{2}\left( \cos 495{}^\circ +i\sin 495{}^\circ \right) \\ & =4\sqrt{2}\left( \cos 135{}^\circ +i\sin 135{}^\circ \right) \end{align}$ The above expression is the polar form of the provided expression. Now, convert it into rectangular form: $z=4\sqrt{2}\left( \cos 135{}^\circ +i\sin 135{}^\circ \right)$ Substitute the value of $\cos 135{}^\circ $ and $\sin 135{}^\circ $ in the above expression: $\begin{align} & z=4\sqrt{2}\left( -0.7071+i0.7071 \right) \\ & =-3.9999+i3.9999 \end{align}$ The above expression is in rectangular form of the provided expression is: Polar form of the provided expression is $4\sqrt{2}\left( \cos 135{}^\circ +i\sin 135{}^\circ \right).$ Rectangular form of the provided expression is $\approx -4.0+4.0i.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.