Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 768: 65

Answer

The complex square roots of the complex numbers are, $3\left[ \cos {{195}^{{}^\circ }}+i\sin {{195}^{{}^\circ }} \right]\ \ \text{ and }\ 3\left[ \cos {{15}^{{}^\circ }}+i\sin {{15}^{{}^\circ }} \right]\ \ \ $.

Work Step by Step

Here $z=9\left( \cos {{30}^{{}^\circ }}+i\sin {{30}^{{}^\circ }} \right)$ Therefore $\begin{align} & {{z}_{1}}=\sqrt[2]{9}\left[ \cos \left( \frac{{{30}^{{}^\circ }}+{{360}^{{}^\circ }}}{2} \right)+i\sin \left( \frac{{{30}^{{}^\circ }}+{{360}^{{}^\circ }}}{2} \right) \right]\ \ \ \\ & {{z}_{1}}=3\left[ \cos \left( \frac{{{390}^{{}^\circ }}}{2} \right)+i\sin \left( \frac{{{390}^{{}^\circ }}}{2} \right) \right]\ \ \ \\ \end{align}$ \ Similarly, for the other root, $\begin{align} & {{z}_{0}}=\sqrt[2]{9}\left[ \cos \left( \frac{{{30}^{{}^\circ }}+{{360}^{{}^\circ }}\times 0}{2} \right)+i\sin \left( \frac{{{30}^{{}^\circ }}+{{360}^{{}^\circ }}\times 0}{2} \right) \right]\ \ \ \\ & {{z}_{0}}=3\left[ \cos {{15}^{{}^\circ }}+i\sin {{15}^{{}^\circ }} \right]\ \ \ \\ \end{align}$ The square roots of the complex number in the polar form is $3\left[ \cos \left( \frac{{{390}^{{}^\circ }}}{2} \right)+i\sin \left( \frac{{{390}^{{}^\circ }}}{2} \right) \right]\ $ and $3\left[ \cos {{15}^{{}^\circ }}+i\sin {{15}^{{}^\circ }} \right]\ \ \ $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.