Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 768: 68

Answer

The complex cube roots of the given complex numbers in polar form are, $3\left[ \cos 342{}^\circ +i\sin 342{}^\circ \right]\text{, }3\left[ \cos 102{}^\circ +i\sin 102{}^\circ \right]\text{ and }3\left[ \cos 222{}^\circ +i\sin 222{}^\circ \right]$.

Work Step by Step

Consider the given complex number, $27\left( \cos 306{}^\circ +i\sin 306{}^\circ \right)$ For any complex number of the type, $z=r\cos \theta +i\sin \theta $ If n is a positive integer, then ${{z}^{n}}$ is, ${{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +360{}^\circ k}{n} \right)+i\sin \left( \frac{\theta +360{}^\circ k}{n} \right) \right]$ ...... (1) Now, for the given complex number, use (1) to get, $\begin{align} & {{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +360{}^\circ k}{n} \right)+i\sin \left( \frac{\theta +360{}^\circ k}{n} \right) \right] \\ & {{z}_{1}}=\sqrt[3]{27}\left[ \cos \left( \frac{306{}^\circ +360{}^\circ }{3} \right)+i\sin \left( \frac{306{}^\circ +360{}^\circ }{3} \right) \right] \\ & {{z}_{1}}=3\left[ \cos \left( \frac{666{}^\circ }{3} \right)+i\sin \left( \frac{666{}^\circ }{3} \right) \right] \\ \end{align}$ \ Now, for the other root, $\begin{align} & {{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +360{}^\circ k}{n} \right)+i\sin \left( \frac{\theta +360{}^\circ k}{n} \right) \right] \\ & {{z}_{0}}=\sqrt[3]{27}\left[ \cos \left( \frac{306{}^\circ +360{}^\circ \times 0}{3} \right)+i\sin \left( \frac{306{}^\circ +360{}^\circ \times 0}{3} \right) \right] \\ & {{z}_{0}}=3\left[ \cos \frac{306{}^\circ }{3}+i\sin \frac{306{}^\circ }{3} \right] \\ & {{z}_{0}}=3\left[ \cos 102{}^\circ +i\sin 102{}^\circ \right] \\ \end{align}$ \ Now, for the other root, $\begin{align} & {{z}_{k}}=\sqrt[n]{r}\left[ \cos \left( \frac{\theta +360{}^\circ }{n} \right)+i\sin \left( \frac{\theta +360{}^\circ }{n} \right) \right] \\ & {{z}_{2}}=\sqrt[3]{27}\left[ \cos \left( \frac{306{}^\circ +360{}^\circ \times 2}{3} \right)+i\sin \left( \frac{306{}^\circ +360{}^\circ \times 2}{3} \right) \right] \\ & {{z}_{2}}=3\left[ \cos \frac{1026{}^\circ }{3}+i\sin \frac{1026{}^\circ }{3} \right] \\ & {{z}_{2}}=3\left[ \cos 342{}^\circ +i\sin 342{}^\circ \right] \\ \end{align}$ The complex cube roots of the given complex numbers in polar form are, $3\left[ \cos 342{}^\circ +i\sin 342{}^\circ \right]\text{, }3\left[ \cos 102{}^\circ +i\sin 102{}^\circ \right]\text{ and }3\left[ \cos 222{}^\circ +i\sin 222{}^\circ \right]$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.