Answer
The division of the complex numbers in the polar form is $\cos 200{}^\circ +i\sin 200{}^\circ $.
Work Step by Step
Here,
$\begin{align}
& {{z}_{1}}=\cos 70{}^\circ +i\sin 70{}^\circ \\
& {{z}_{2}}=\cos 230{}^\circ +i\sin 230{}^\circ \\
\end{align}$
Therefore,
$\begin{align}
& \frac{{{z}_{1}}}{{{z}_{2}}}=\frac{1}{1}\left( \cos \left( 70{}^\circ -230{}^\circ \right)+i\sin \left( 70{}^\circ -230{}^\circ \right) \right) \\
& =\left( \cos \left( -160 \right){}^\circ +i\sin \left( -160 \right){}^\circ \right) \\
& =\cos 200{}^\circ +i\sin 200{}^\circ
\end{align}$
The division of the complex numbers in the polar form is $\cos 200{}^\circ +i\sin 200{}^\circ $