Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 768: 50

Answer

The division of the complex numbers in the polar form is $\cos 200{}^\circ +i\sin 200{}^\circ $.

Work Step by Step

Here, $\begin{align} & {{z}_{1}}=\cos 70{}^\circ +i\sin 70{}^\circ \\ & {{z}_{2}}=\cos 230{}^\circ +i\sin 230{}^\circ \\ \end{align}$ Therefore, $\begin{align} & \frac{{{z}_{1}}}{{{z}_{2}}}=\frac{1}{1}\left( \cos \left( 70{}^\circ -230{}^\circ \right)+i\sin \left( 70{}^\circ -230{}^\circ \right) \right) \\ & =\left( \cos \left( -160 \right){}^\circ +i\sin \left( -160 \right){}^\circ \right) \\ & =\cos 200{}^\circ +i\sin 200{}^\circ \end{align}$ The division of the complex numbers in the polar form is $\cos 200{}^\circ +i\sin 200{}^\circ $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.