Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.10 - The Binomial Series and Applications of Taylor Series - Exercises 10.10 - Page 633: 52

Answer

$-\ln \dfrac{(1-x)}{x}; -1 \leq x \leq 1$

Work Step by Step

Recall the Taylor series for $\ln (1+x)=x-\dfrac{ x^2}{2}+\dfrac{x^3}{3}-....$ ; $-1 \leq x \leq 1$ Now, $=1+\dfrac{x}{2}+ \dfrac{x^2}{3} + \dfrac{x^3}{4}+....$ or, $=(- \dfrac{1}{x})(-x- \dfrac{x^2}{2}- \dfrac{x^3}{3} - \dfrac{x^4}{4}-......)$ or, $= (-\dfrac{1}{x}) \times \ln (1-x) $ or, $=-\ln \dfrac{(1-x)}{x}; -1 \leq x \leq 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.